Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.820
Filtrar
1.
Clin Respir J ; 18(5): e13772, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725348

RESUMO

Sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15) has been identified as an immune suppressor and a promising candidate for immunotherapy of cancer management. However, the association between Siglec-15 expression and clinicopathological features of lung adenocarcinoma (LUAD), especially the prognostic role, is not fully elucidated. In this present study, a serial of bioinformatics analyses in both tissue and cell levels were conducted to provide an overview of Siglec-15 expression. Real-time quantitative PCR (qPCR) test, western blotting assay, and immunohistochemistry (IHC) analyses were conducted to evaluate the expression of Siglec-15 in LUAD. Survival analysis and Kaplan-Meier curve were employed to describe the prognostic parameters of LUAD. The results of bioinformatics analyses demonstrated the up-regulation of Siglec-15 expression in LUAD. The data of qPCR, western blotting, and IHC analyses further proved that the expression of Siglec-15 in LUAD tissues was significantly increased than that in noncancerous tissues. Moreover, the expression level of Siglec-15 protein in LUAD was substantially associated with TNM stage. LUAD cases with up-regulated Siglec-15 expression, positive N status, and advance TNM stage suffered a critical unfavorable prognosis. In conclusion, Siglec-15 could be identified as a novel prognostic biomarker in LUAD and targeting Siglec-15 may provide a promising strategy for LUAD immunotherapy.


Assuntos
Adenocarcinoma de Pulmão , Biomarcadores Tumorais , Neoplasias Pulmonares , Humanos , Prognóstico , Feminino , Masculino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/mortalidade , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Idoso , Imuno-Histoquímica , Estadiamento de Neoplasias , Regulação para Cima , Imunoglobulinas/metabolismo , Imunoglobulinas/genética , Lectinas/metabolismo , Lectinas/genética , Análise de Sobrevida , Proteínas de Membrana
2.
Scand J Immunol ; 99(6): e13366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720518

RESUMO

Antiphospholipid syndrome is a rare autoimmune disease characterized by persistent antiphospholipid antibodies. Immunoglobulin G plays a vital role in disease progression, with its structure and function affected by glycosylation. We aimed to investigate the changes in the serum immunoglobulin G glycosylation pattern in antiphospholipid syndrome patients. We applied lectin microarray on samples from 178 antiphospholipid syndrome patients, 135 disease controls (including Takayasu arteritis, rheumatoid arthritis and cardiovascular disease) and 100 healthy controls. Lectin blots were performed for validation of significant differences. Here, we show an increased immunoglobulin G-binding level of soybean agglutinin (p = 0.047, preferring N-acetylgalactosamine) in antiphospholipid syndrome patients compared with healthy and disease controls. Additionally, the immunoglobulin G from antiphospholipid syndrome patients diagnosed with pregnancy events had lower levels of fucosylation (p = 0.001, recognized by Lotus tetragonolobus) and sialylation (p = 0.030, recognized by Sambucus nigra I) than those with simple thrombotic events. These results suggest the unique serum immunoglobulin G glycosylation profile of antiphospholipid syndrome patients, which may inform future studies to design biomarkers for more accurate diagnosis of antiphospholipid syndrome and even for the prediction of clinical symptoms in patients.


Assuntos
Síndrome Antifosfolipídica , Imunoglobulina G , Humanos , Síndrome Antifosfolipídica/imunologia , Síndrome Antifosfolipídica/sangue , Síndrome Antifosfolipídica/diagnóstico , Glicosilação , Feminino , Masculino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Adulto , Pessoa de Meia-Idade , Gravidez , Lectinas/sangue , Lectinas/metabolismo , Lectinas/imunologia , Biomarcadores/sangue , Análise Serial de Proteínas/métodos , Anticorpos Antifosfolipídeos/sangue , Anticorpos Antifosfolipídeos/imunologia , Lectinas de Plantas/metabolismo , Lectinas de Plantas/imunologia , Idoso , Glicoproteínas
3.
Neurol India ; 72(2): 309-318, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691475

RESUMO

BACKGROUND: Acute cerebral infarction (ACI) is a common neurological disease that is associated with high morbidity, disability and mortality rates. At present, antiplatelet therapy is a necessary treatment for ACI. The present study aimed to investigate the effects of omentin-1 on the intravenous thrombolysis of ACI. OBJECTIVE: The present study aimed to investigate the effects of omentin-1 on the intravenous thrombolysis of ACI. MATERIAL AND METHODS: The mouse model of ACI was induced using male C57BL/6 mice through middle cerebral artery occlusion (MCAO). Meanwhile, the murine BV2 microglial cells were pretreated with 0.1 mg/ml of lipopolysaccharide (LPS), and then induced with 2 mM of adenosine triphosphate (ATP). RESULTS: The omentin-1 mRNA expression in patients receiving intravenous thrombolysis for ACI was down-regulated compared with the normal group. Additionally, the serum level of omentin-1 was negatively correlated with National Institute of Health Stroke Scale (NIHSS) score or serum level of IL-1ß or MMP-2 in patients receiving intravenous thrombolysis for ACI. Meanwhile, the serum mRNA expression of omentin-1 was positively correlated with Barthel index or high-sensitivity C-reactive protein (hs-CRP) in patients undergoing intravenous thrombolysis for ACI. As observed from the in vitro model, Omentin-1 reduced inflammation, promoted cell growth, alleviated ROS-induced oxidative stress, and enhanced AMPK activity through activating NLRP3 ubiquitination. Omentin-1 presented ACI in the mouse model of ACI. Regulating AMPK activity contributed to controlling the effects of Omentin-1 on the in vitro model. CONCLUSIONS: Omentin-1 reduced neuroinflammation and ROS-induced oxidative stress in the mouse model of ACI, which was achieved by inhibiting NLRP3 ubiquitination through regulating AMPK activity. Therefore, omentin-1 may serve as a treatment factor for the intravenous thrombolysis of ACI in further clinical application.


Assuntos
Citocinas , Proteínas Ligadas por GPI , Lectinas , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ubiquitinação , Animais , Citocinas/metabolismo , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Ubiquitinação/efeitos dos fármacos , Modelos Animais de Doenças , Infarto Cerebral/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Terapia Trombolítica/métodos , Pessoa de Meia-Idade , Idoso
4.
Front Cell Infect Microbiol ; 14: 1391758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716194

RESUMO

Campylobacter jejuni, a Gram-negative bacterium, is one of the most common causes of foodborne illness worldwide. Its adhesion mechanism is mediated by several bacterial factors, including flagellum, protein adhesins, lipooligosaccharides, proteases, and host factors, such as surface glycans on epithelial cells and mucins. Fungal lectins, specialized carbohydrate-binding proteins, can bind to specific glycans on host and bacterial cells and thus influence pathogenesis. In this study, we investigated the effects of fungal lectins and protease inhibitors on the adhesion of C. jejuni to model biotic surfaces (mucin, fibronectin, and collagen) and Caco-2 cells as well as the invasion of Caco-2 cells. The lectins Marasmius oreades agglutinin (MOA) and Laccaria bicolor tectonin 2 (Tec2) showed remarkable efficacy in all experiments. In addition, different pre-incubations of lectins with C. jejuni or Caco-2 cells significantly inhibited the ability of C. jejuni to adhere to and invade Caco-2 cells, but to varying degrees. Pre-incubation of Caco-2 cells with selected lectins reduced the number of invasive C. jejuni cells the most, while simultaneous incubation showed the greatest reduction in adherent C. jejuni cells. These results suggest that fungal lectins are a promising tool for the prevention and treatment of C. jejuni infections. Furthermore, this study highlights the potential of fungi as a rich reservoir for novel anti-adhesive agents.


Assuntos
Aderência Bacteriana , Campylobacter jejuni , Lectinas , Inibidores de Proteases , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/fisiologia , Campylobacter jejuni/metabolismo , Humanos , Células CACO-2 , Aderência Bacteriana/efeitos dos fármacos , Lectinas/metabolismo , Lectinas/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Fungos/efeitos dos fármacos , Mucinas/metabolismo , Células Epiteliais/microbiologia , Fibronectinas/metabolismo
5.
Nat Commun ; 15(1): 3900, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724552

RESUMO

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Assuntos
Asma , Proteínas Ligadas por GPI , Interleucina-13 , Lectinas , Mucina-5AC , Muco , Asma/genética , Asma/metabolismo , Humanos , Muco/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Lectinas/genética , Lectinas/metabolismo , Mucina-5AC/genética , Mucina-5AC/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Criança , Feminino , Masculino , Células Epiteliais/metabolismo , Polimorfismo Genético , Mucosa Nasal/metabolismo , Mucosa Respiratória/metabolismo , Citocinas
6.
Langmuir ; 40(15): 7974-7981, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564230

RESUMO

An electrochemical impedimetric biosensing platform with lectin as a molecular recognition element has been established for the sensitive detection of glycoproteins, a class of important biomarkers in clinical diagnosis. One of the representative metal-organic framework materials, MIL-101(Cr)-NH2, was utilized as the supporting matrix, and its amino groups served as the anchors to immobilize the lectins of concanavalin A (Con A), constituting Con A@MIL-101(Cr)-NH2 for the determination of invertase (INV) as a model glycoprotein. The Con A concentration, immobilization time, and incubation time with INV were optimized. Under the optimal conditions, the degree of impedance increase was linearly proportional to the logarithm of INV concentration between 1.0 × 10-16 and 1.0 × 10-11 M, affording a limit of detection as low as 3.98 × 10-18 M. Good specificity, stability, reproducibility, and repeatability were demonstrated for the fabricated biosensing platform. Moreover, real mouse serum samples were spiked with different concentrations of INV. Excellent recoveries were obtained, which demonstrated the biosensing platform's capability of analyzing glycoproteins within a complex matrix.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Animais , Camundongos , Concanavalina A , Estruturas Metalorgânicas/química , Reprodutibilidade dos Testes , Lectinas/química , Glicoproteínas , Técnicas Eletroquímicas , Limite de Detecção
7.
Biochem Biophys Res Commun ; 710: 149881, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583233

RESUMO

Maackia amurensis lectins serve as research and botanical agents that bind to sialic residues on proteins. For example, M. amurensis seed lectin (MASL) targets the sialic acid modified podoplanin (PDPN) receptor to suppress arthritic chondrocyte inflammation, and inhibit tumor cell growth and motility. However, M. amurensis lectin nomenclature and composition are not clearly defined. Here, we sought to definitively characterize MASL and its effects on tumor cell behavior. We utilized SDS-PAGE and LC-MS/MS to find that M. amurensis lectins can be divided into two groups. MASL is a member of one group which is composed of subunits that form dimers, evidently mediated by a cysteine residue in the carboxy region of the protein. In contrast to MASL, members of the other group do not dimerize under nonreducing conditions. These data also indicate that MASL is composed of 4 isoforms with an identical amino acid sequence, but unique glycosylation sites. We also produced a novel recombinant soluble human PDPN receptor (shPDPN) with 17 threonine residues glycosylated with sialic acid moieties with potential to act as a ligand trap that inhibits OSCC cell growth and motility. In addition, we report here that MASL targets PDPN with very strong binding kinetics in the nanomolar range. Moreover, we confirm that MASL can inhibit the growth and motility of human oral squamous cell carcinoma (OSCC) cells that express the PDPN receptor. Taken together, these data characterize M. amurensis lectins into two major groups based on their intrinsic properties, clarify the composition of MASL and its subunit isoform sequence and glycosylation sites, define sialic acid modifications on the PDPN receptor and its ability to act as a ligand trap, quantitate MASL binding to PDPN with KD in the nanomolar range, and verify the ability of MASL to serve as a potential anticancer agent.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ácido N-Acetilneuramínico/metabolismo , Maackia/química , Maackia/metabolismo , Neoplasias Bucais/patologia , Cromatografia Líquida , Ligantes , Espectrometria de Massas em Tandem , Lectinas/farmacologia , Antineoplásicos/farmacologia , Análise de Sequência , Movimento Celular
8.
Sci Rep ; 14(1): 8587, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615147

RESUMO

Helicobacter pylori infects approximately half the human population and has an unusual infective niche of the human stomach. Helicobacter pylori is a major cause of gastritis and has been classified as a group 1 carcinogen by the WHO. Treatment involves triple or quadruple antibiotic therapy, but antibiotic resistance is becoming increasingly prevalent. Helicobacter pylori expresses certain blood group related antigens (Lewis system) as a part of its lipopolysaccharide (LPS), which is thought to assist in immune evasion. Additionally, H. pylori LPS participates in adhesion to host cells alongside several adhesion proteins. This study profiled the carbohydrates of H. pylori reference strains (SS1 and 26695) using monoclonal antibodies (mAbs) and lectins, identifying interactions between two carbohydrate-targeting mAbs and multiple lectins. Atomic force microscopy (AFM) scans were used to probe lectin and antibody interactions with the bacterial surfaces. The selected mAb and lectins displayed an increased adhesive force over the surface of the curved H. pylori rods. Furthermore, this study demonstrates the ability of anti-carbohydrate antibodies to reduce the adhesion of H. pylori 26695 to human gastric adenocarcinoma cells via AFM. Targeting bacterial carbohydrates to disrupt crucial adhesion and immune evasion mechanisms represents a promising strategy for combating H. pylori infection.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Helicobacter , Helicobacter pylori , Humanos , Lipopolissacarídeos , Polissacarídeos , Anticorpos Monoclonais , Lectinas
9.
PLoS Negl Trop Dis ; 18(4): e0012048, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564496

RESUMO

BACKGROUND: Numerous studies indicate a potential protective role of helminths in diabetes mellitus (DM) progression. The complement system, vital for host defense, plays a crucial role in tissue homeostasis and immune surveillance. Dysregulated complement activation is implicated in diabetic complications. We aimed to investigate the influence of the helminth, Strongyloides stercoralis (Ss) on complement activation in individuals with type 2 DM (T2D). METHODOLOGY: We assessed circulating levels of complement proteins (C1q, C2, C3, C4, C4b, C5, C5a, and MBL (Lectin)) and their regulatory components (Factor B, Factor D, Factor H, and Factor I) in individuals with T2D with (n = 60) or without concomitant Ss infection (n = 58). Additionally, we evaluated the impact of anthelmintic therapy on these parameters after 6 months in Ss-infected individuals (n = 60). RESULTS: Ss+DM+ individuals demonstrated reduced levels of complement proteins (C1q, C4b, MBL (Lectin), C3, C5a, and C3b/iC3b) and complement regulatory proteins (Factor B and Factor D) compared to Ss-DM+ individuals. Following anthelmintic therapy, there was a partial reversal of these levels in Ss+DM+ individuals. CONCLUSION: Our findings indicate that Ss infection reduces complement activation, potentially mitigating inflammatory processes in individuals with T2D. The study underscores the complex interplay between helminth infections, complement regulation, and diabetes mellitus, offering insights into potential therapeutic avenues.


Assuntos
Anti-Helmínticos , Diabetes Mellitus Tipo 2 , Helmintos , Strongyloides stercoralis , Estrongiloidíase , Animais , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator B do Complemento , Fator D do Complemento/uso terapêutico , Complemento C1q , Estrongiloidíase/complicações , Estrongiloidíase/tratamento farmacológico , Ativação do Complemento , Anti-Helmínticos/uso terapêutico , Lectinas
10.
Nature ; 629(8010): 165-173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632398

RESUMO

Streptomyces are a genus of ubiquitous soil bacteria from which the majority of clinically utilized antibiotics derive1. The production of these antibacterial molecules reflects the relentless competition Streptomyces engage in with other bacteria, including other Streptomyces species1,2. Here we show that in addition to small-molecule antibiotics, Streptomyces produce and secrete antibacterial protein complexes that feature a large, degenerate repeat-containing polymorphic toxin protein. A cryo-electron microscopy structure of these particles reveals an extended stalk topped by a ringed crown comprising the toxin repeats scaffolding five lectin-tipped spokes, which led us to name them umbrella particles. Streptomyces coelicolor encodes three umbrella particles with distinct toxin and lectin composition. Notably, supernatant containing these toxins specifically and potently inhibits the growth of select Streptomyces species from among a diverse collection of bacteria screened. For one target, Streptomyces griseus, inhibition relies on a single toxin and that intoxication manifests as rapid cessation of vegetative hyphal growth. Our data show that Streptomyces umbrella particles mediate competition among vegetative mycelia of related species, a function distinct from small-molecule antibiotics, which are produced at the onset of reproductive growth and act broadly3,4. Sequence analyses suggest that this role of umbrella particles extends beyond Streptomyces, as we identified umbrella loci in nearly 1,000 species across Actinobacteria.


Assuntos
Antibiose , Proteínas de Bactérias , Toxinas Bacterianas , Streptomyces , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibiose/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/ultraestrutura , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Microscopia Crioeletrônica , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Lectinas/ultraestrutura , Testes de Sensibilidade Microbiana , Modelos Moleculares , Streptomyces/química , Streptomyces/efeitos dos fármacos , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces griseus/efeitos dos fármacos , Streptomyces griseus/genética , Streptomyces griseus/crescimento & desenvolvimento , Streptomyces griseus/metabolismo
11.
Zebrafish ; 21(2): 177-180, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621207

RESUMO

Lectins are carbohydrate-binding proteins with specific affinity to glycoconjugates expressed in various tissues. Lectins are of substantial utility as research, histochemical, and diagnostic tools in mammalian systems. Reactivity of 12 commonly used plant-based lectins was studied in zebrafish liver. Four lectins, tomato lectin (TL), wheat germ agglutinin, concanavalin A, and Jacalin showed strong reactivity to hepatic parenchymal structures. Importantly, TL reacted to glycoconjugates within segments of the larval and adult intrahepatic biliary network, from canaliculi to bile ducts. We provide evidence that lectins can serve as important histochemical tools to investigate the structural and functional characteristics of the zebrafish liver.


Assuntos
Lectinas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Histocitoquímica , Fígado/metabolismo , Glicoconjugados/metabolismo , Mamíferos/metabolismo
12.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673784

RESUMO

COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Glycoprotein clusterin (CLU) has many functions such as phagocyte recruitment, complement system inhibition, apoptosis inhibition, hormone and lipid transport, as well as in the immune response. The study aimed to assess the changes in CLU concentrations and the profile and degree of CLU glycosylation between patients with severe COVID-19, convalescents, and healthy subjects (control). The profile and degree of serum CLU N-glycosylation were analyzed using lectin-ELISA with specific lectins. CLU concentrations were significantly lower and relative reactivities of CLU glycans with SNA (Sambucus nigra agglutinin) were significantly higher in severe COVID-19 patients in comparison to convalescents and the control group. The relative reactivities of CLU glycans with MAA (Maackia amurensis agglutinin), together with relative reactivity with LCA (Lens culinaris agglutinin), were also significantly higher in patients with severe COVID-19 than in convalescents and the control group, but they also significantly differed between convalescents and control. The development of acute inflammation in the course of severe COVID-19 is associated with a decrease in CLU concentration, accompanied by an increase in the expression of α2,3-linked sialic acid, and core fucose. Both of these parameters can be included as useful glycomarkers differentiating patients with severe COVID-19 from convalescents and the control group, as well as convalescents and healthy subjects.


Assuntos
Biomarcadores , COVID-19 , Clusterina , SARS-CoV-2 , Humanos , Clusterina/sangue , COVID-19/sangue , COVID-19/diagnóstico , Glicosilação , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores/sangue , Idoso , Adulto , Lectinas/sangue
13.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673930

RESUMO

Marine algal lectins specific for high-mannose N-glycans have attracted attention because they strongly inhibit the entry of enveloped viruses, including influenza viruses and SARS-CoV-2, into host cells by binding to high-mannose-type N-glycans on viral surfaces. Here, we report a novel anti-influenza virus lectin (named HBL40), specific for complex-type N-glycans, which was isolated from a marine green alga, Halimeda borneensis. The hemagglutination activity of HBL40 was inhibited with both complex-type N-glycan and O-glycan-linked glycoproteins but not with high-mannose-type N-glycan-linked glycoproteins or any of the monosaccharides examined. In the oligosaccharide-binding experiment using 26 pyridylaminated oligosaccharides, HBL40 only bound to complex-type N-glycans with bi- and triantennary-branched sugar chains. The sialylation, core fucosylation, and the increased number of branched antennae of the N-glycans lowered the binding activity with HBL40. Interestingly, the lectin potently inhibited the infection of influenza virus (A/H3N2/Udorn/72) into NCI-H292 cells at IC50 of 8.02 nM by binding to glycosylated viral hemagglutinin (KD of 1.21 × 10-6 M). HBL40 consisted of two isolectins with slightly different molecular masses to each other that could be separated by reverse-phase HPLC. Both isolectins shared the same 16 N-terminal amino acid sequences. Thus, HBL40 could be useful as an antivirus lectin specific for complex-type N-glycans.


Assuntos
Antivirais , Clorófitas , Lectinas , Polissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/química , Clorófitas/química , Antivirais/farmacologia , Antivirais/química , Lectinas/farmacologia , Lectinas/química , Lectinas/metabolismo , Lectinas/isolamento & purificação , Humanos , Animais , Cães , Células Madin Darby de Rim Canino , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos
14.
Life Sci ; 346: 122643, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614308

RESUMO

Lectins are protein or glycoprotein molecules with a specific ability to bind to carbohydrates. From viruses to mammals, they are found in various organisms and exhibit remarkable diverse structures and functions. They are significant contributors to defense mechanisms against microbial attacks in plants. They are also involved in functions such as controlling lymphocyte migration, regulating glycoprotein biosynthesis, cell-cell recognition, and embryonic development in animals. In addition, lectins serve as invaluable molecular tools in various biological and medical disciplines due to their reversible binding ability and enable the monitoring of cell membrane changes in physiological and pathological contexts. Microbial lectins, often referred to as adhesins, play an important role in microbial colonization, pathogenicity, and interactions among microorganisms. Viral lectins are located in the bilayered viral membrane, whereas bacterial lectins are found intracellularly and on the bacterial cell surface. Microfungal lectins are typically intracellular and have various functions in host-parasite interaction, and in fungal growth and morphogenesis. Although microbial lectin studies are less extensive than those of plants and animals, they provide insights into the infection mechanisms and potential interventions. Glycan specificity, essential functions in infectious diseases, and applications in the diagnosis and treatment of viral and bacterial infections are critical aspects of microbial lectin research. In this review, we will discuss the application and therapeutic potential of viral, bacterial and microfungal lectins.


Assuntos
Lectinas , Humanos , Lectinas/metabolismo , Animais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/metabolismo , Viroses/tratamento farmacológico , Viroses/metabolismo , Bactérias/metabolismo , Vírus/metabolismo , Vírus/patogenicidade
15.
J Morphol ; 285(5): e21698, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669130

RESUMO

The glycosylation of macromolecules can vary both among tissue structural components and by adverse conditions, potentially providing an alternative marker of stress in organisms. Lectins are proteins that bind carbohydrate moieties and lectin histochemistry is a common method to visualize microstructures in biological specimens and diagnose pathophysiological states in human tissues known to alter glycan profiles. However, this technique is not commonly used to assess broad-spectrum changes in cellular glycosylation in response to environmental stressors. In addition, the binding of various lectins has not been studied in elasmobranchs (sharks, skates, and rays). We surveyed the binding tissue structure specificity of 14 plant-derived lectins, using both immunoblotting and immunofluorescence, in the pectoral fins of neonate little skates (Leucoraja erinacea). Skates were reared under present-day or elevated (+5°C above ambient) temperature regimes and evaluated for lectin binding as an indicator of changing cellular glycosylation and tissue structure. Lectin labeling was highly tissue and microstructure specific. Dot blots revealed no significant changes in lectin binding between temperature regimes. In addition, lectins only detected in the elevated temperature treatment were Canavalia ensiformis lectin (Concanavalin A) in spindle cells of muscle and Ricinus communis agglutinin in muscle capillaries. These results provide a reference for lectin labeling in elasmobranch tissue that may aid future investigations.


Assuntos
Lectinas , Temperatura , Animais , Lectinas/metabolismo , Nadadeiras de Animais , Rajidae , Glicosilação , Animais Recém-Nascidos , Ligação Proteica
16.
Cell Rep ; 43(4): 114022, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568806

RESUMO

Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. The initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus: SasG-I and SasG-II. Structural analyses of SasG-II identify a nonaromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicate that SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment results in different binding profiles between SasG-I and SasG-II on skin cells. In addition, SasG-mediated adhesion is recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.


Assuntos
Aderência Bacteriana , Queratinócitos , Pele , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Humanos , Pele/microbiologia , Pele/metabolismo , Queratinócitos/microbiologia , Queratinócitos/metabolismo , Lectinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Filogenia , Ligação Proteica
17.
Anal Chem ; 96(17): 6558-6565, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38632928

RESUMO

Glycosylation, a fundamental biological process, involves the attachment of glycans to proteins, lipids, and RNA, and it plays a crucial role in various biological pathways. It is of great significance to obtain the precise spatial distribution of glycosylation modifications at the cellular and tissue levels. Here, we introduce LectoScape, an innovative method enabling detailed imaging of tissue glycomes with up to 1 µm resolution through image mass cytometry (IMC). This method utilizes 12 distinct, nonoverlapping lectins selected via microarray technology, enabling the multiplexed detection of a wide array of glycans. Furthermore, we developed an efficient labeling strategy for these lectins. Crucially, our approach facilitates the concurrent imaging of diverse glycan motifs, including N-glycan and O-glycan, surpassing the capabilities of existing technologies. Using LectoScape, we have successfully delineated unique glycan structures in various cell types, enhancing our understanding of the glycan distribution across human tissues. Our method has identified specific glycan markers, such as α2,3-sialylated Galß1, 3GalNAc in O-glycan, and terminal GalNAc, as diagnostic indicators for cervical intraepithelial neoplasia. This highlights the potential of LectoScape in cancer diagnostics through the detection of abnormal glycosylation patterns.


Assuntos
Glicômica , Lectinas , Polissacarídeos , Humanos , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Glicômica/métodos , Lectinas/química , Lectinas/metabolismo , Lectinas/análise , Glicosilação
18.
Int J Biol Macromol ; 266(Pt 2): 131341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574922

RESUMO

Sialic acids are negatively charged carbohydrates that are components of saccharide chains covalently linked to macromolecules. Sialylated glycoproteins are important for most biological processes, including reproduction, where they are associated with spermatogenesis, sperm motility, immune responses, and fertilization. Changes in the glycoprotein profile or sialylation in glycoproteins are likely to affect the quality of ejaculate. The aim of this study was to determine differences in the degree of sialylation between normozoospermic ejaculates and ejaculates with a pathological spermiogram using two lectins, Sambucus nigra (SNA) and Maackia amurensis (MAL II/MAA) recognizing α-2,6 or α-2,3 linkage of Sia to galactosyl residues. Our results show a close relationship between seminal plasma (SP) sialoproteins and the presence of anti-sperm antibodies in the ejaculate, apoptotic spermatozoa, and ejaculate quality. Using mass spectrometry, we identified SP sialoproteins such as, semenogelins, glycodelin, prolactin-inducible protein, lactotransferrin, and clusterin that are associated with spermatozoa and contribute to the modulation of the immune response and sperm apoptosis. Our findings suggest a correlation between the degree of SP glycoprotein sialylation and the existence of possible pathological states of spermatozoa and reproductive organs. Glycoproteins sialylation represents a potential parameter reflecting the overall quality of ejaculate and could potentially be utilised in diagnostics.


Assuntos
Sêmen , Espermatozoides , Masculino , Humanos , Sêmen/metabolismo , Sêmen/química , Espermatozoides/metabolismo , Motilidade dos Espermatozoides , Glicoproteínas/metabolismo , Glicodelina/metabolismo , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Análise do Sêmen/métodos , Clusterina/metabolismo , Lectinas/metabolismo , Lectinas/química , Ejaculação , Ácidos Siálicos/metabolismo , Proteínas de Plasma Seminal/metabolismo , Lactoferrina/metabolismo , Apoptose
19.
Cell Rep ; 43(4): 114012, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573856

RESUMO

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.


Assuntos
Eritrócitos , Plasmodium falciparum , Polissacarídeos , Proteínas de Protozoários , Humanos , Antígenos de Protozoários/metabolismo , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Lectinas/metabolismo , Lectinas/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética
20.
BMJ Open Diabetes Res Care ; 12(2)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38442989

RESUMO

INTRODUCTION: Circulating omentin levels have been positively associated with insulin sensitivity. Although a role for adiponectin in this relationship has been suggested, underlying mechanisms remain elusive. In order to reveal the relationship between omentin and systemic metabolism, this study aimed to investigate associations of serum concentrations of omentin and metabolites. RESEARCH DESIGN AND METHODS: This study is based on 1124 participants aged 61-82 years from the population-based KORA (Cooperative Health Research in the Region of Augsburg) F4 Study, for whom both serum omentin levels and metabolite concentration profiles were available. Associations were assessed with five multivariable regression models, which were stepwise adjusted for multiple potential confounders, including age, sex, body mass index, waist-to-hip ratio, lifestyle markers (physical activity, smoking behavior and alcohol consumption), serum adiponectin levels, high-density lipoprotein cholesterol, use of lipid-lowering or anti-inflammatory medication, history of myocardial infarction and stroke, homeostasis model assessment 2 of insulin resistance, diabetes status, and use of oral glucose-lowering medication and insulin. RESULTS: Omentin levels significantly associated with multiple metabolites including amino acids, acylcarnitines, and lipids (eg, sphingomyelins and phosphatidylcholines (PCs)). Positive associations for several PCs, such as diacyl (PC aa C32:1) and alkyl-alkyl (PC ae C32:2), were significant in models 1-4, whereas those with hydroxytetradecenoylcarnitine (C14:1-OH) were significant in all five models. Omentin concentrations were negatively associated with several metabolite ratios, such as the valine-to-PC ae C32:2 and the serine-to-PC ae C32:2 ratios in most models. CONCLUSIONS: Our results suggest that omentin may influence insulin sensitivity and diabetes risk by changing systemic lipid metabolism, but further mechanistic studies investigating effects of omentin on metabolism of insulin-sensitive tissues are needed.


Assuntos
Citocinas , Proteínas Ligadas por GPI , Resistência à Insulina , Lectinas , Humanos , Adiponectina/metabolismo , Diabetes Mellitus/metabolismo , Insulina , Proteínas Ligadas por GPI/sangue , Lectinas/sangue , Citocinas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA